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METHOD OF REDUCTION TO THE ORDINARY DIFFERENTIAL EQUATIONS 

OF L. V. KANTOROVICHANDA GENKRALMETHOD FOR THE SOLUTION 

OF MULTIDIMENSIONAL KEAT-TRA~SFER EQUATIONS 

V. G. Prokopov, E. I. Bespalova, 
and Yu. V. Sherenkovskii 

UDC 536.2:517.946 

A method is proposed for the solution of multidimensional heat-transfer problems, 
representing a further elaboration and generalization of projection methods. 

The mathematical investigation of heat- and mass-transfer processes in various kinds of 
heat-exchange equipment is known to require the solution of complex multidimensional problems. 
The advent of the Ritz and Bubnov-Galerkin methods for the solution of problems in the varia- 
tional and differential formulations, respectively, set the stage for the development of a 
powerful trend in applied math~-,~tlcs, viz., projection methods [i, 2]j and afforded the con- 
ceptual possibility of solving a broad category of multidimensional problems. However, even 
in cases where the theory guarantees convergence of the indicated methods, a sufficiently 
accurate solution is obtainable, as a rule, for a large number n of pertinent parameters. 
This fact, in turnj means the application of computing hardware. Familiar difficulties may 
also be encountered in connection with the onset of instability and, accordingly, a loss of 
accuracy of the solution with increasing value of n (contrary to theory), up to the point of 
complete divergence of the process [i]. Coping with these difficulties by refinement of the 
coordinate functions through their orthogonalization, compliance with boundary conditions, 
etc., is not too effective in the general case, because all of these procedures are imple- 
mented on a distinctly a priori choice of basis. A cardinal solution of the general problem 
can be achieved by seeking to obtain reliable (not a prioril) functional information with 
essential reliance on the original mathematical statement of the problem. A fi=st step in 
this direction is offered by the method of reduction to Kantorovich-Vlasov ordinary differ- 
ential equations [3j 4]. In this method the constant coefficients involved in the Ritz 
(Galerkin) procedure are superseded by functional coefficients depending on one of the argu- 
ments of the problem~ i.e., the required solution u(x) of an N-dimensional problem is repre- 
sented in the form 

Here ~(x) = {~m (~)}m=~ is a vector function of a vector argument x = (x:, xa, ..., XN) , the 
components of which are basic functions selected a priori; K(x k) = {Kj(Xk)}nj=~ , vector func- 
tion of a variable Xk, the components of which are evaluated deterministically from the one- 
dimensional problem; and F, function characterizing the form of representation of the solution, 
i.e., its structure. It is customarily assumed in projection methods that 

n 
u (x] = Km (la) 

n Z ~  | 

This approach improved the convergence of the solution in comparsion with the Ritz and 
Bubnov-Galerkin procedures. However, because of the intuitive choice of functional informa- 
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tlon from the remaining (N -- i) variables contained in the basis functions {~m(X)} =,, the 
convergence of the Kantorovlch--Vlasov method is still unsatisfactory, especially for N > 2. 
The next step in the logical development of this approach seems natural: to introduce into the 
form of representation (i), (in) as functional coefficients, not one [(Xk) , but N vector func- 
tions in each of the arguments of the problem: 

(~ = ~ (~, (x,), .~ (x~) . . . . .  7 ~  (x~), ~ (~) (2) 

specifically 

n 

m ~ l  

We emphasize the fact that in this representation each vector function X--i(xi) = {Xij (xi)}~= , 
(i = i, 2, ..., N) depends only on one variable x i. It is clear that for the deterministic 
evaluation of all Xij(xi) (J = l, 2, ..., n, i = l, 2, ..., N) it is now required at once to 
formulate not one, as in the Kantorovlch--Vlasov method, but N one-dimensional problems. To 
facilitate the comparative characterization of the methods we refer to the correspondence 
between the number of dimensions of the original problem (N) and =he number of one-dlmenslonal 
problems to be solved (m) as the structure of the correspondence of N to m (N § m). By this 
definition the Ritz (Gal(.rkin) and the Kantorovlch--~lasov methods have N § 0 and N § 1 struc- 
tures, respectively. In this article, by contrast, we propose a method based on the repre- 
sentation of the solution in the form (2), realizing an N § N correspondence structure. 

We outline the essentials of the method in the example of an N-dimensional problem for- 
mulated in the differential setting with respect to a scalar function u(x) of a vector argu- 
ment x = (x,, xa, ..., x N): 

Du(x) = [ ( ~  x 6 g ,  (3) 

Eu(~)  = ~ (x) xEs. (4)  

Here D and E are linear or nonlinear differential operators; g, domain with boundary s in the 
space R N of the variable x; and f, 4, given functions. 

As mentioned D the required solution u(x) is assumed to have the form (2). In this ex- 
pression the functions {~m(X)}lm_-z play the role of basic functions and, as in all projection 
methods, are selected a priori; the functions {XiJ(Xi)}nl]=1 (i = i, 2p .,., N), which are 
argument functions, are unknown and must be determined. Inasmuch as the unknowns in the pro- 
posed method comprise not Just one, but a set of N vector functions, for their determinations, 
as we indicated, it is totally natural to formulate N one-dimenslonal problems in each vari- 
able of the domain. To find these problems we can invoke the fundamental notions of projec- 
tion methods embodied in such classical approaches as the method of moments, the Bubnov-- 
Galerkin method, the method of orthogonal projections, collocation, etc. [2, 5, 6]. Thus, 
according to the tenets of the method of orthogonal projections, a one-dimensional problem 
in the variable x k is obtained from the original problem (3), (4) by substituting (2) therein, 
multiplying by a certain system of n k functions Wkp(X ) (p = i, 2, ..., nk) , and integrating 
with respect to all variables except x k between their limits of variation. Applying this 
reasoning to each of the N arguments separately, we obtain the system of one-dimensional 
problems 

a'_~L x,, XNl 
S i" "'" .i" [DF (X--~ (x 0, X~ (x~) . . . . .  X,x, (x~r), "c~ (x)) 7- [ (x--)] W~,,dx.,d.v~ . . .  dXv = 0, .r~o < x, < x, t ,  

~,o Lo %vo ( 5 . 1 )  
xit xa~, XNI 

X2o X,~ XNO 

Xat x,l xNI 

j j' . . .  ~ IDF ( 2 ,  (.~-,), ~ .  (x~) . . . .  , 7 , , '  (~,v), ~ (-~)> - -  t (;)1 ~V~,,e.,-,d.,-..... ex,v =-- 0, ~.~o < x,: < ~-.,, , 
x,, x~o XNo ( 5 . 2 )  

XIL X.~X XN! 

j j . . .  j" . . . . .  4 .  ...... = o ,  . . . . .  
x lo  X~o xNO 'x~x~-a 

� 9  . . . . . . . . .  . . . . . . . . . . . . . . . . .  ( 5 )  
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xtt X,_t XN.--I , 1 

5 5 5  
x,o xeo XN--1,0 

[DF (Xi (.q), X,_, (x~) . . . . .  X~,, (x v), ~ (x')) - -  

--/(~)] Wivhdxidx~ . . .  dx,v_, - O ,  x~o < xl~ < x~,, t, 

Xt, x~_t XN--I,I 

; [ . . .  ; . . . . .  

x,,. .~.-,, XN--1 .0 

- -  q~ (~')] Wivh dx~dxe . d,~ _l I xN=XNo . .  . "  = 0  ( k = l ,  2 . . . .  n~v). 

N XN=XN1 J 

(5N) 

m 

W~ note that the role of the weighting functions Wkp(X) can be taken by the unknown func- 
tions XJ(xj) (J = i) 2) ...) k--l, k + i) ..., N) (see the example). In particular, pro- 
ceeding from the variational formulation) we have Wkp = 8F/~Xkp (p = l) 2) ... ) nk) k = l) 
2, ..., N). 

We now discuss the results. The system (5) consists of N subsystems (5.1)-(5.N) and can 
be used to find all the argument functions. (We call each subsystem an argument problem, 
since it is formulated in unknown functions of only one of the N arguments of the original 
problem.) However, besides the unknown functions, a given argument problem in the variable 
x i also contains certain parameters obtained by the procedure of reduction of the multidimen- 
sional to a one-dimensional problem and associated with the argument functions of the other 
variables x~, x2, ...) xi-x) xi+x) xi+2, ...) x N. This is why each of the argument problems 
cannot be solved separately and must be considered in interrelationship with the other argu- 
ment problems. Only when analyzed simultaneously is the system of argument problems complete 
and usable for determining all the unknown argument functions in all the variables. Thus, 
besides the usual completeness within the scope of each argument problem (in the sense of cor- 
respondence between the number of equations and the number of unknowns), we also have the 
global completeness of the system, i.e., eorrespondencebetween the number of one-dimensional 
argument problems and the number of dimensions of the original multidimensional problem (N § 
N structure). Methods that have such a property belong to the class of methods of complete 
systems [7]. 

It must be emphasized that the governing system of the Kantorovich--Vlasov method essen- 
tially represents one of the argument problems (5) governing the functions of one argument 
only: x i (N + 1 structure). It is, therefore, a special case of the general system (5) and 
is deduced from the latter if the argument functions in all variables of the problem except 
one) xi) are eliminated at the outset in the initial stage of solution in the representation 
(2). It is obvious that the representation (i) so obtained is a special case of the repre- 
sentation (2) adopted in the method proposed here. 

We now compare the projection methods discussed above in the plan of their evolution, 
on the one hand, and the approach proposed here, on the other. The replacement of the con- 
stant coefficients (N + 0 structure, Ritz and Galerkin procedures) by variable coefficients 
in one of the N arguments of the problem (N § 1 structure) Kantorovich--Vlasov method) is an 
important stage in the development of projection approaches. But the introduction of N 
families of functional coefficients in each of the variables of the problem (N + N structure, 
method of complete systems) is more than Just the next refinement of projection methods; it 
is a fundamental turning point, taking the developed approach beyond the realm of projection 
methods. Now the method acquires wholly new attributes and possibilities [7]. The role of 
the individual structural components of the solution also undergoes a radical change. Thus, 
the center of gravity in the given method is shifted from intuitively chosen components (basic 
functions) to functions obtained deterministieally in the course o~ solution of the problem 
[the argument functions {Xij(xi)}nij=, (i = ~)__2) ...) N)]. Consequently, the functional 
foundation of projection methods, the basis ~(x), now plays a secondary role and, as a rule, 
should be excluded altogether, i.e., it is required in (2)to set ~(~) ~ i. We note that 
projection methods lose any meaning whatsoever under such a presumption. On the other hand, 
the use of a basis in the given approach is Justified in isolated cases where reliable infor- 
mation about the solution is available and it can be reliably incorporated by the introduc- 
tion of basis functions. 
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We now give an example illustrating the effectiveness of the method developed here spe- 
cifically in a situation where the basis functions are unquestionably excluded. We consider 
a transverse fluid flow past a long cylindrical heat-releasing element (PB~ P ~l, 0~ 8 
27). The steady-state temperature distribution T(p, ~) inside this element is described by 
the two-dlmensional boundary-value problem 

p ap P + p~" O0 ~ = 

OT OT 
~ 0  for p = p , ;  ~ + B i T = O  fo~ 9 = 1 ;  

dp < o  

OT 
- - = 0  for O=O, .~ 
O0 

(6) 

(the latter condition makes use of the symmetry of the problem with respect to 0 about the 
cross section 0-~). Here 

f r~ I t  o~r. qv 
p - = ~ ;  p~ . . . . . . .  ; T= ; B i - = - - ;  P = - -  (7 )  

r H r H qv=ax r~, k qvm~.~ 
We solve the problem by two methods: the Kantorovich--Vlasov method of reduction to 

ordinary differential equations in the variable P and the method of complete systems developed 
here. The form of representation of the unknown solution in both approaches is taken as fol- 
lows: 

T. (0, O) = ~ R~ (p) f2, (0). (8) 
i = ;  

In the method of complete systems, however, the functions Ri(P) and the functions ~i(O) are 
assumed to be unknown and must be evaluated. In the Kantorovich--Vlasov method the functions 
~i(0) (i = i, 2, . .., n) play the role of basis functions and are chosen a priori. [In the 
given problem the basis functions are considered to be the eigenfunctions of the original 
problem with respect to the variable 8:~i(8) = cos i8 (i = l, 2, ..., n).] 

The governing system of argument problems for the method of complete systems, according 
to the preceding discussion, is written for (6) in the form 

where 

i=I P ~ Ri (P) J~ik ---- -- ]'~h (to), (9. i) 

n 

Ri(p,,) ---- O, ~ [R~ (l) J,,~ + R,(1) J3M = O; 
i = I  

n 

19-7 (o) e , ~ - -  a,  (o) lr..,~ + m (0) R, (1) R~ (])1} = - -  e ~  (o). (9) 
/=1  

el (o) = al (~) = o, 

J'~ = S e ,  (o) .o.~ (o) dO; F,~  = S p 
0 PB 

z,,~ = ~ a: (o) ~_~. (o) cO; 
0 

Js~ = .[ Bi (01 ei (0) _O. k (0) dO; F:,h = S pR, {p) R; {p) dp; 
C Ps  

x 1 

J~  (P) = .t" P (p' O) ak (0) dO, e3~ (0) = S P (p' O) Rh (P) ap. 
0 PB 
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Tn/O, ~ P 
- - 1  
. . . .  /f 

20 'lJ~l 

,';-- z ,Z~,5" 

:" j p;J.. - ', - 
:.4-2L_ 

/ ' 

0 - a--l-- i 
y \ 

Fig. 1 Fig. 2 

FiE. i. Distribution curves Tn(P*, 8 ~) for n = I, 2, ..., 5 
and P(p~, 8 ~) for 8* = e/~ = 0. I) Proposed approach; II) Kan- 
torovich--Vlasov method; III) P(p*, 0). 

FiE. 2. Distribution curves Tn(Pe, 6 ~) for n - l, 2, ..., 5, 
P(pe, 8 e) and Bi(8 e) for 0 ~ = (p -- pB)/(I-- pB ) = 0.75. a) T n 
(0.75; 8*); b) P(0.75; 6"), Bi(e*); I) Proposed method; II) 
Kantorovich--Vlasov method. 

The problem is solved for the following initial data: PB = 0.~, P((Q, 8) = exp (--lO(blp -- 
0.85J + 6)), Bi(B) = A cos 8 + B cos 28 + C sin (8/2) , A= ~ --B, B C{2/2--b, C = (a + d + 
2b)/(1 + ~), a = Bi (0) = 10, b = Bi (z/2) = 2, d = B; (7)= 4. The governing system for 
the Kantorovich--Vlasov method is one of the argument problems (9), and for the method of com- 
plete systems it is the one-dimensional problem (9.1) in the variable p. 

To compare the rates of convergence of both methods we give the results of solving the 
problem with the retention of various numbers n of terms in the representation (8) (Figs. 1 
and 2). The solution obtained by the method of complete systems, even for n = l, realistical- 
ly reflects the qualitative pattern of the distribution of the required function Tn(P,~) 
in both directions, and for n = 2, we already observe practically complete convergence of the 
solution. For the same number of terms (n = l, 2) the solution obtained by the Kantorovich-- 
Vlasov method fails not only quantitatively, but even qualitatively to capture the behavior 
of the required temperature function, particularly in the approximating direction (Fig. 2a). 
Even with the retention of five (n = 5) terms in the series (8) the solution by the Kantoro- 
vich--Vlasov method has a greater error for the maximum value of the function Tn(P, ~ ) (30%) 
than for one term in the method of complete systems (20%). These data, therefore, evince the 
high effectiveness of the proposed method in the sense of rate of convergence of the solving 
process. 

NOTATION 

Xk, independent variable; u, unknown function; D, E, differential operators; F, form of 
representation of the solution; ~m, basis functions; KJ, functional coefficients; Wkp~ weigh- 
ting functions; Xij , argument functions; t, temperature; qv, output of internal heat sources; 
I, thermal conductivity; =, heat-transfer coefficient; r, radial coordinate; rB, rH, inside 
and outside radii of ring (cylindrical element). 
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